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We analyze the shapes of roughness distributions of discrete models in the Kardar, Parisi, and Zhang �KPZ�
and in the Villain, Lai, and Das Sarma �VLDS� classes of interface growth, in one and two dimensions. Three
KPZ models in d=2 confirm the expected scaling of the distribution and show a stretched exponential tail
approximately as exp�−x0.8�, with a significant asymmetry near the maximum. Conserved restricted solid-on-
solid models belonging to the VLDS class were simulated in d=1 and d=2. The tail in d=1 has the form
exp�−x2� and, in d=2, has a simple exponential decay, but is quantitatively different from the distribution of the
linear fourth-order �Mullins-Herring� theory. It is not possible to fit any of the above distributions to those of
1 / f� noise interfaces, in contrast with recently studied models with depinning transitions.
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I. INTRODUCTION

The simplest quantitative characteristic of an interface is
its width, or roughness, w, defined as the rms fluctuation of
the height around its average position. The scaling of the
average width of different realizations with the length L and
the time t is useful for analyzing interfaces formed in several
processes �1,2�. Another potentially useful characteristic is
the full roughness distribution at the steady state, particularly
in cases where reliable estimates of scaling exponents are not
available.

The distributions for linear growth models, such as the
Edwards-Wilkinson �EW� and the Mullins-Herring �MH�
equations, were obtained exactly in d=1 and can be com-
puted with high degree of accuracy in d=2 �3–5�. The gen-
erating functions for Gaussian interfaces with power spec-
trum of the type 1/ f� were computed by the same methods
�6,7�. However, many real interfaces are described by non-
linear equations at a coarse-grained level, and their scaling
exponents and roughness distributions are exactly known
only in some particular cases. Consequently, their accurate
numerical calculation may provide a basis for comparison
with results from experiments or model systems. In this Brief
Report, we will study numerically the distributions of models
governed by second-order and fourth-order nonlinear growth
equations, in d=1 and d=2.

The first model is that of Kardar, Parisi, and Zhang �KPZ�
�8�, in which the local height h at position x� and time t
evolves as

�h

�t
= �2�

2h + �2��h�2 + ��x�,t� . �1�

Here, �2 and �2 are constants and � is a Gaussian noise with
zero mean and variance ���x� , t���x�� , t���=D�d�x� −x�����t
− t��, where d is the dimension of the substrate. In the case
�2=0, we obtain the EW equation.

Another important nonlinear model is that of Villain �9�
and Lai and Das Sarma �10�, the so-called VLDS equation
�or nonlinear molecular-beam epitaxy �MBE� equation�,

�h

�t
= �4�

4h + �4�
2��h�2 + ��x�,t� , �2�

where �4 and �4 are constants. The linear version of Eq. �2�
��4=0� is the MH equation �1,4,5,11,12�.

Previous studies �3,5� of the roughness distributions of
discrete models in these classes suggested that they have a
universal shape, with the form

PL�w2� =
1

�w2�
�� w2

�w2�
� , �3�

where PL�w2�dw2 is the probability that the width of a given
configuration lies in the range �w2 ,w2+dw2�. Alternatively,
one may use the scaling form

PL�w2� =
1

	

�w2 − �w2�

	
� , �4�

where 		
�w2
2�− �w2�2 is the rms deviation of the squared

width.
For KPZ in d=1, these scaling relations are analytically

predicted and confirmed by numerical data �3�. In d=2,
simulations of discrete models showed agreement with the
scaling relation �3� �5,13�, but the shape of the scaling func-
tion was not analyzed in detail. Here, we will calculate ac-
curate roughness distributions for three discrete models in
d=2: the etching model of Mello et al. �14�, the restricted
solid-on-solid �RSOS� model of Kim and Kosterlitz �15� and
a generalized RSOS model with maximum neighboring
heights difference �Hmax=2 �15,16�, hereafter called
RSOS2. Their analysis is presented in Sec. II.

Roughness distributions of the VLDS class were previ-
ously obtained by Rácz and Plischke �5�, who simulated a
model with Arrhenius dynamics in d=2. In order to analyze
the shapes of the VLDS distributions, both in d=1 and d
=2, we will simulate conserved solid-on-solid �CRSOS�
models which show moderate finite-size effects when com-
pared to other discrete VLDS models. Their original versions
were proposed by Kim et al. �17� and were rigorously proved
to belong to the VLDS class �18,19�. Their analysis is pre-
sented in Sec. III.
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In Sec. IV, we summarize our results and conclusions.

II. ROUGHNESS DISTRIBUTIONS OF KPZ MODELS
IN 2+1 DIMENSIONS

In Fig. 1 we show the distributions of KPZ models scaled
according to Eq. �4�, with x	�w2− �w2�� /	. Results for other
system sizes confirm the expected scaling of Fig. 1. The
number of configurations in which w2 was measured was
near 108 for each model and periodic boundary conditions
were adopted. Equations �3� and �4� are equivalent, but the
latter was used because it provides better data collapse for
the KPZ models.

Quantitative information on the shape of the KPZ distri-
bution can be obtained from the dimensionless ratios of the
moments of the roughness distribution Wn�L�	�0

��w2

− �w2��nPL�w2�. The ratios obtained with better accuracy in-
volve the lowest-order moments: the skewness S	W3 /W2

3/2

and the kurtosis Q	W4 /W2
2−3. Although these quantities do

not characterize the whole distribution, they may be useful
for the comparison with data from experiments or other
model systems if data collapse methods are unreliable.

The finite-size estimates of S and Q for the distributions
of the RSOS and the etching models are shown in Figs. 2�a�
and 2�b�. Their asymptotic estimates are S=1.70±0.02 and
Q=5.4±0.3. These large values show that the roughness dis-
tribution strongly deviate from a Gaussian near the maxi-
mum. For xxM, where xM is the abscissa of the maximum
of the distribution in Fig. 1, the curve has an approximately
Gaussian shape centered at xM. However, for x�xM, it sig-
nificantly deviates from a Gaussian, showing a much slower
decay.

The tail of the logarithm-linear plot in Fig. 1 is not a
straight line, contrary to what is observed in the
1+1-dimensional KPZ model. This is certainly related to the
non-Gaussian behavior of the KPZ interface in 2+1 dimen-
sions �20,21�. It is reasonable to assume that the scaling
function decays as 
�x��x�exp�−Ax��. Thus, for fixed �,
the estimates of the exponent � are given by

��x� =

ln ln�x−�
�x��
ln��x − ��−�
�x − ����

ln�x/�x − ���
, �5�

with constant �.
In Fig. 3 we show the effective exponents obtained from

the data of the RSOS and the etching models in L=256 as a
function of 1/x2, for three values of �. The assumption of
pure exponential decay ��=0� leads to an asymptotic esti-
mate ��0.8. With �=−0.2, we obtain the smallest fluctua-
tion of ��x� in the range of the variable x analyzed here.
Results for values of � near −0.2 give �=0.8±0.1. Although
�=−1 suggests a simple exponential decay ��=1� for the
etching model, it shows discrepancies with the estimates for
the RSOS model, reinforcing the proposal of the stretched
exponential form.

One question that could be raised here is the possibility of
fitting the KPZ distributions by those of 1 / f� signals �7�.

FIG. 2. �Color online� �a� Skewness and �b� kurtosis of the
interface width distributions at the steady states of the RSOS
�squares� and etching �triangle� models as a function of inverse
lattice length.

FIG. 3. �Color online� Effective exponents ��x� of the exponen-
tial decay of the scaling functions versus 1/x2, for three values of
the exponent � and the models RSOS �squares� and etching
�crosses�. The dotted �dashed� curve is a linear fit of the data of the
RSOS �etching� model.

FIG. 1. �Color online� Scaled roughness distributions �according
to Eq. �4�� at the steady states of the models: RSOS in L=256 �solid
line�, etching in L=256 �squares�, and RSOS2 in L=128 �triangles�.
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However, the plots of the distributions for several values of
� show that this procedure does not provide good fits of our
data. Indeed, this can be quantitatively explained by the
above values of the skewness and the kurtosis, which are
much larger than the upper bounds for the distributions of
1 / f� signals �7�: S=
2 and Q=3 obtained in the limit �
→�. Moreover, the simple exponential decay of the 1/ f�

distributions for large x disagrees with the exp�−x0.8� decay
of the KPZ models.

III. ROUGHNESS DISTRIBUTIONS OF VLDS MODELS

The CRSOS models considered here are extensions of the
original ones in which the incident particle executes a ran-
dom walk among neighboring columns until finding a posi-
tion in which its aggregation is allowed �22�. In CRSOS1
and CRSOS2 models, the conditions �Hmax=1 and �Hmax
=2 between neighboring columns are satisfied, respectively.
Nearly 108 configurations were used to measure w2 in each
case.

Here, we will show distributions scaled according to Eq.
�3�, as is done in most previous works. This is also helpful
for a comparison with known results for the MH theory.

In Fig. 4�a� we plot log��w2�PL�w2�� versus y	w2 / �w2�
for the CRSOS1 and the CRSOS2 models in d=1, with L
=256. The scaling function for the MH theory, given in Ref.
�4�, is also shown. Its simple exponential decay contrasts
with the more rapid decay of the VLDS models.

The skewness and the kurtosis of the scaled VLDS distri-
bution are obtained along the same lines of the KPZ values:
S=1.22±0.05 and Q=1.6±0.2. They contrast with the much
larger values S=1.988… and Q=5.951… of the MH theory
�4,7�. An approximately exp�−y2� decay is suggested by a
linear fit of the data for the CRSOS1 model in the range 2
�y�5, as shown in Fig. 4�b�.

Our results in d=2 are shown in Fig. 4�c�, where scaled
distributions of the CRSOS1 model �L=64� and the MH
theory are compared. The latter was obtained from the gen-
erating function given in Ref. �5� and the calculation of the
residues of more than 20 poles closest to the origin. Both
distributions have a simple exponential decay for large y,
which is justified in the VLDS case by the linear fit shown in
Fig. 4�c� �2�x4�. However, the VLDS distribution is
much narrower than that of the MH theory: the maximum of
the VLDS scaling function is ��1.3, while the maximum of
the MH one is ��1 �e. g., see Ref. �5��, and the respective
decays are, approximately, exp�−1.8y� and exp�−1.3y�. For
the VLDS distribution, the skewness and kurtosis are S
�1.1 and Q�1.8, while the values for the MH theory are
S�1.30 and Q�2.63.

We also tried to fit the scaled distributions of the CRSOS1
model, in d=1 and d=2, with 1/ f� noise distributions �7�,
with some value of �. In d=1, no good fit was already ex-
pected due to the form of the decay of the scaling function
discussed above. In d=2, there is no simultaneous agreement
of the values of S and Q of those distributions and our esti-
mates, for any �, indicating that this type of fit is also

impossible. In Ref. �5�, a fit with �=3 was suggested for the
distribution of a growth model with Arrhenius dynamics, but
this was probably a consequence of the lower accuracy of the
data for that model.

IV. CONCLUSION

Roughness distributions were calculated for several dis-
crete models in the KPZ and the VLDS class, in one-
dimensional and two-dimensional substrates, confirming the
scaling relations �3� and �4�. The scaling functions are differ-
ent from their counterparts of the linear theories, EW �second
order� and MH �fourth order�. In the 2+1-dimensional KPZ
class, large values of the skewness S and kurtosis Q of the
scaling functions are related to the high asymmetry near the
maximum. For large x, the scaling functions decay approxi-
mately as exp�−x0.8�, in contrast to the simple exponential
decay of the linear theories and of 1+1-dimensional KPZ. In
the 1+1-dimensional VLDS class, S and Q are smaller than
those of the MH theory and a decay approximately as
exp�−x2� is obtained. For the 2+1-dimensional VLDS class,
the simple exponential decay of the scaled distribution is
quantitatively different from that of the MH theory.

Another interesting point of our study is that none of the
above distributions are fitted by those of 1 / f� noise, for any
�. It contrasts with the distributions for model and experi-
mental interfaces in the depinning thresholds analyzed in re-
cent works �23–25�, which indicates strong effects of the

FIG. 4. �Color online� �a� Scaled roughness distributions �ac-
cording to Eq. �3�� at the steady states of the CRSOS1 �squares� and
CRSOS2 �crosses� models in d=1, with L=256. The solid curve is
the scaled distribution of the MH theory in d=1. �b� The same
distributions for CRSOS1 and CRSOS2 models as a function of y2

and a linear fit �dashed line� of the data for the CRSOS1 model. �c�
Distributions of the CRSOS1 model in d=2, with L=64, and a
linear fit of the data �dashed line� in the range 2y4. The solid
curve is the distribution of the MH theory in d=2.
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non-Gaussian nature of the KPZ �in d=2� and VLDS inter-
faces. On the other hand, it suggests the study of other mod-
els with depinning transitions, particularly those with rela-
tively simple dynamics whose growth phases are in the KPZ
class �26�, for a comparison with 1/ f� noise distributions.
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